
1

Applying Component- 
based Software 
Engineering in On-board 
Software 22.10.2008

SciSys
Bristol, UK

Aleš Plšek, ales.plsek@inria.fr

Frédéric Loiret
Michal Malohlava
Lionel Seinturier
Philippe Merle



2

INRIA

INRIA
• 8 research centers
• 1800 scientists, 1000 PhD students, 
100 post-docs
• 150 joint research project-teams
•186 million Euros budget, 20% from 
research contracts
• Industrial Relations

• 790 active reseach contracts

• 89 companies



3

INRIA Nord Europe, team ADAM
ADAM -

 

Adaptive Distributed Applications 
and Middleware
• Component Oriented Programming

• Fractal Component Mo0del

• Model-Driven Engineering
• Service Oriented Architectures

• WebServices

• Ubiquitous computing
• Mobile Computing 

• Context Oriented Programming

The team
• 3 Profs, 2 Asist.Prof

• 2 Post-Doc

• 7 PhD students

• 6 R&D engineers



4

Me…

Past (2001-2006)

• Master Studies, DSRG, Charles University in Prague

• Model Checking of Software Components

Present – Since 2006

• 3rd year PhD Student, INRIA ADAM

• Research Interests

– Component-Oriented Programming

– Real-time Java Programming



5

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based RT OS



6

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based RT OS



7

Component-Oriented Programming

Component & Interfaces
• Black-box view
• Programming language agnostic

Hierarchical

 

Component Models
• Composite & primitive components

Fractal

 

Component Model
• Hierarchical component model
• Extension and adaptation 

– reflective components
• Lightweight
• Component Sharing



8

Component-Oriented Programming

Benefits
• Separation of concerns
• Reuse
• Architectural abstractions
And many others: adaptation, 

reflection, …



9

Component & Connectors



10

Component Container

Component Container
• Non-functional

 

properties management
– Lifecycle, Synchronization, 

Reconfiguration
• Interfaces

– Business & Control
• Hidden from the application developer

Fractal Membrane
• Component-oriented container
• Reconfigurability of membranes

– Tailorability
• Controllers & interceptors (connectors)



11

Component-based Development

Component Framework 
• ToolChain Support

– Glue-code generation
• Framework overhead

– Execution infrastructure 
optimizations

Component System Development
• Building system from pre-existing 

components
• Separation of activities 

– development of components, 
testing, deployment, …

• Price of CBSE
– 5x component reuse

V development process for CBD



12

CBSE - Summary

Benefits
• Reuse
• Separation of Concerns
• Architectural Abstraction

Advanced Benefits
• Reflectivity, static/runtime 

adaptation

Framework Benefits
• Tool-chain support
• Glue-Code Generation 



13

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based RT OS



14

Why Real-Time?

Real-time Programming
• A little interest in Real-time from the mainstream software 

engineering community
– Deadlines, interruption handling, too low-level…

Real-Time Systems Trends
• Large-scale, heterogeneous systems
• Dynamically highly adaptable systems
• Systems composed from hard-, soft-, 

and non-real-time units

• Many software engineering techniques can be applied in real-time 
domain

– Component oriented programming, Code generation, Model 
Driven Engineering, Formal Verification, etc.



15

Why Java?

Java
• Easy to use, familiar
• Popular programming language
• Libraries
• Portable across platforms
• But – non-predictable

RTSJ – Real-time Specification for Java
• Making Java predictable



16

Successful Stories

Shipboard computing
• US navy Zumwalt-class 

Destroyer
• 5mio lines of Java code
• Red Hat Linux, RT GC the 

key part

Avionics
• 787 Dreamliner

 

saves 
900kgs of weight

• A380

 

saves a half of the 
processing units

Financial Information Systems



17

RTSJ – Making Java Deterministic

• Real-time Threads
• 2 New Types of Threads

– Realtime threads
– NoheapRealtime threads

• Real-Time threads
– 28 Real-time priorities

• NoheapRealtime threads
– Can not be preempted by 

Garbage Collector
– No heap memory access

• Memory Management
• Immortal Memory

– Objects are collected when 
the application terminates (live 
forever…)

• Memory Scope
– Size is fixed and pre-declared
– Maximum size specified when 

scopes are created
– Lifetime of objects in the 

Scope



18

Challenges in Real-Time Java

Advantages
• 1/9/90 Real-time Rule
• Standard Java Advantages
• hard-, soft-, and non-real-time cooperation

Complexities
• Error-prone process
• Non-intuitive rules and restrictions
• Introducing a new programming style

Software Engineering Aspect
• Ad-hoc approach
• No reuse, verification, formalization, etc.
• No adaptability, distribution support



19

RTSJ vs. C++

Project Golden Gate
• RTSJ on a Mars Rover

RTSJ vs. C++
• C++ : memory management, …
• RTSJ: scheduling API

The bottom line…
• Essential

 

vs. incidental

 

choices
• Separation of concerns

 

needed
• Framework: 

– Essentials specification 
– Generation of language and 

platform- specific incidentals



20

Remedy?

Component Framework for Real-time Java 
• To shield developers from the RTSJ complexities

State-of-the-Art Frameworks
• Compadres, Golden Gate, Real-Time Java Patterns…
• Component-Oriented frameworks for RTSJ
However:
• No separation of concerns
• Low level use of RTSJ concepts
• No adaptability of developed systems



21

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based RT OS



22

Our Goal

• Our Philosophy
• RTSJ substantially influences the architecture

 

of the system, 
therefore has to be considered earlier then

 

during the 
implementation

• Separation of Concerns

• Ultimate Goal: Component Framework for RTSJ
• Alleviate the development process
• Isolate

 

RTSJ–related properties in clearly identified entities
• Manipulate RTSJ-concerns during the development lifecycle



23

Real-Time Component Model - Advantages

Domain Specific Layer
• Domain Components
• Functional Components

Advantages
• Abstracting

 

the complexities of 
real-time development

• Real-Time concerns at the 
architectural level

– evaluate RTSJ compatibility

 
earlier then “after the 
implementation”

General Purpose Layer 

Domain Specific Layer 



24

Domain Components Application

Thread Domains

Memory Domains• Different assemblies of real-time components - 
Adapting systems for different real-time conditions.

• Composition & Communication constraints 
• At the architectural level we reason about conformance to 

RTSJ



25

Execution Infrastructure, Membrane 
Architectures

Framework
• Glue-code generation

– Execution Infrastructure Code
– Membrane architecture generation
– Intercepting mechanisms, 

connectors
– Generated code conforms to RTSJ



26

Framework Summary
Component Framework for RTSJ

• Benchmarks

Advantages
• Separation of Concepts

– Domain Components
• Architectural Abstractions

– RT concerns at the architectural level
• RTSJ-related code generation

– Membranes
– Connectors

• Mitigation of complexities
– Only functional code implemented by the user

Memory Footprint

Execution Time 
Distribution



27

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based Real-Time OS



28

Real-time OS

Motivation
• OS implementations generally « highly

 

monolithic

 

»
– Implemented as number of functions highly-coupled
– Control based on many globally shared variables

Goals – Component-oriented RT OS
• Enhance the code modularity

 

& the reuse

 

of low-level basic 
services

• Tailorable OS 
• Based on Think

 

- C implementation of Fractal
• Performance

 

& memory

 

footprint overhead

 

impacted by the 
framework is a priority to considered at OS-level



29

Componentization of microC OS

Micrium

 

-

 

μC/OS-II
• Provide the basic real-time services, deterministic

– Task management (priority-based scheduling), Time and 
Timer management, Fixed Sized Memory Block 
management, IPC : Semaphores / Message mailboxes and 
queues

• Well established in industry
• Certified in avionics

 

- by the Federal Avion Adinistration 
(FAA)

• Ported on many hardware platforms



30

Real-Time OS – Component Oriented 

Task Create 

Task Resume/ 
Suspend

Delay 

Task 
Management 

Time 
Management 

CPU 

TimeTick_ISR

Context 
Switch Hardware- 

Dependent 
component 

Generic 
Component 

Decoupling between generic

 

and 
hardware-dependent

 
components



31

Application Example 

• Multitasking aspects are specified at the architectural level



32

RT OS – Industrial Project RoadMap

Short-term
• Performance and memory footprint analyses compared to the original 

implementation
• Minimize the overhead

– Suppress the indirections added by the framework
– (Several optimizations already implemented within the Think tool 

chain)
• Port the experiment to a microcontroler (32 bits / ARM based)

Mid-term
• JVM componentization
• MIND project

– French industries interested in using CBSE toochains at the production 
level

– Implementation of Operating System and Middleware component 
libraries for :

– multiprocessor System-on-Chip (MPSoC)
– E.g. electric distribution devices



33

Outline

Component-Based Software Engineering (CBSE)

Real-Time Java Specification (RTSJ)

Our Research
• RTSJ for Fractal
• Component-based Real-Time OS

Conclusion



34

Conclusion

Component-Oriented Programming
• Already established in industry - Fractal
• Benefits

– Reuse, separation of concerns, architecture abstraction
• Advanced Benefits

– Reconfigurability – hard to achieve in RT systems

RTSJ
• Not applicable without extensive tool support

Framework for RTSJ
• CBSE substantially alleviate the development process
• Separation of RTSJ- and business-related code
• RTSJ code automatically generated



35

Questions?


	Applying Component-based Software Engineering in On-board Software 
	INRIA
	INRIA Nord Europe, team ADAM
	Me…
	Outline
	Outline
	Component-Oriented Programming
	Component-Oriented Programming
	Component & Connectors
	Component Container
	Component-based Development
	CBSE - Summary
	Outline
	Why Real-Time?
	Why Java?
	Successful Stories
	�RTSJ – Making Java Deterministic
	Challenges in Real-Time Java
	RTSJ vs. C++
	Remedy?
	Outline
	Our Goal
	Real-Time Component Model - Advantages
	Domain Components Application
	Execution Infrastructure, Membrane Architectures
	Framework Summary
	Outline
	Real-time OS
	Componentization of microC OS
	Real-Time OS – Component Oriented 
	Application Example 
	RT OS – Industrial Project RoadMap
	Outline
	Conclusion
	Questions?

